Tilted Magnetic Levitation Enables Measurement of the Complete Range of Densities of Materials with Low Magnetic Permeability.
نویسندگان
چکیده
Magnetic levitation (MagLev) of diamagnetic or weakly paramagnetic materials suspended in a paramagnetic solution in a magnetic field gradient provides a simple method to measure the density of small samples of solids or liquids. One major limitation of this method, thus far, has been an inability to measure or manipulate materials outside of a narrow range of densities (0.8 g/cm(3) < ρ < 2.3 g/cm(3)) that are close in density to the suspending, aqueous medium. This paper explores a simple method-"tilted MagLev"-to increase the range of densities that can be levitated magnetically. Tilting the MagLev device relative to the gravitational vector enables the magnetic force to be decreased (relative to the magnetic force) along the axis of measurement. This approach enables many practical measurements over the entire range of densities observed in matter at ambient conditions-from air bubbles (ρ ≈ 0) to osmium and iridium (ρ ≈ 23 g/cm(3)). The ability to levitate, simultaneously, objects with a broad range of different densities provides an operationally simple method that may find application to forensic science (e.g., for identifying the composition of miscellaneous objects or powders), industrial manufacturing (e.g., for quality control of parts), or resource-limited settings (e.g., for identifying and separating small particles of metals and alloys).
منابع مشابه
The Effects of an Imposed Magnetic Field on Natural Convection in a Tilted Cavity with Partially Active Vertical Walls:Numerical Approach
The effect of imposed magnetic field on natural convection in a tilted cavity with partially active walls was investigated numerically. The active part of the right side wall was at a higher temperature than the active part of the left side wall and were moving on vertical walls relative to each other. The top, the bottom and the remaining parts of the side walls were insulated. The magnetic fi...
متن کاملApplications of Impedance Plane and Magnetic Differential Permeability in Microstructural Characterization of AISI D2 Tool Steel
Two nondestructive electromagnetic/magnetic techniques including hysteresis loop and eddy current methodologies have been used to characterize microstructural changes of AISI D2 cold work tool steel as a result of quench and tempering treatments. To measure the fraction retained austenite in quenched microstructure, six specimens were austenitized in the range of 1000-1130 °C. Samples austenit...
متن کاملTuned Parameters of PID for Optimization of Losses in Magnetic Levitation System
In this paper a new method is proposed for determining PID controller parameters in order to decrease losses in levitation system of magnetic trains. It is assumed that this system is a hybrid system and it consists of electric and permanent magnet. For optimization of losses initially AC losses of magnetic levitation system are calculated. Linear model of levitation system as well as modeling ...
متن کاملOptical properties of a semi-infinite medium consist of graphene based hyperbolic meta-materials with tilted optical axis
In this paper, the optical properties of a semi-infinite medium composed of graphen-based hyperbolic meta-materials with the optical axis were tilted with respect to its boundary with air, by using the Maxwell equations; then the homogeneous effective medium approximation method was studied. The results showed that the orientation of the structure layers (geometric induced anisotropy) affec...
متن کاملThe Measurement of Low Frequency Magnetic Field of Two Kinds of GSM900 Mobile Phone
Introduction: The use of mobile communication systems has dramatically increased over the past decade. Although many studies have been performed to determine the effect of radio frequency (RF) but less attention has been paid to the possible biological impact of exposure to extremely low frequency (ELF) components. The objective of this study is two folds. One is to design the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of the American Chemical Society
دوره 138 4 شماره
صفحات -
تاریخ انتشار 2016